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Abstract--The transport phenomena of convection, diffusion and thermal conduction are analysed for a 
large-activation-energy burning of a spherical bipropellant droplet. The reaction A + B ~ 2 C  is assumed to 
occur in the gaseous phase. The reciprocal value of the activation energy is the small parameter. The two 
lowest-order terms of the mass flow rate, the flame position and the flame structure are obtained as 
functions of the nonstoichiometry of the droplet composition. © 1997 Elsevier Science Ltd. All rights 

reserved. 

INTRODUCTION 

This paper is devoted to consistent analysis of  the 
single droplet burning for more complex chemistry 
than just A--* B. An interested reader can find the 
detailed historical survey in the previous paper [1], 
which treated the reaction of  the arbitrary order (of 
the type nA --* B). 

Numerous  investigations have been devoted to the 
theoretical analysis of  a single droplet burning. Earlier 
papers [2, 3] were based on the thin flame model. The 
theory taking into account the flame structure, the 
activation energy and the Lewis number Le = 2/pcpD 
was developed in refs. [4, 5]. But these articles treated 
a one-dimensional plane deflagration in the gas phase. 

The burning of  a spherical liquid droplet for A --* B 
was first examined by Fendell [6]. The same method 
as in ref. [6] was then used in refs. [7-11] to treat the 
droplet burning in various circumstances. However,  
all these papers treated the same, simplest case A 
B. At  the same time, investigations of  the plane flame 
were treated, e.g. a more complex reaction A + B--* 
2C [12-16]; but the droplet case was never inves- 
tigated for this bimolecular type of  chemistry for the 
premixed case. 

Interesting papers [21-24] which appeared recently 
treat either a plane premixed flame front for the bimo- 
lecular chemistry or a droplet burning for the 
diffusional flame (a droplet consisting of  propellant 
and environs of  oxidizer). A bipropellant droplet, to 
our knowledge, was not treated. 

In the present paper we treat the case of  the irre- 
versible one-step reaction A + B ~ 2C for the burning 
of  a single spherical droplet. 

t Address for correspondence: Tashkentskaya Street, 
10-2-39, Moscow, 109444, Russia. 

ANALYSIS 

Consider an isolated droplet consisting of  the pre- 
mixture of  two species A and B which can react in the 
gaseous state according to the bimolecular scheme 
A + B ~ 2 C .  

The burning is supposed stationary and spherically 
symmetrical and the droplet having constant radius a 
due to the large liquid/gas densities ratio. Then the 
equations of  mass conservation and of  diffusion and 
thermal conduction can be put as following [17]: 

4nr2pv = const. = M (1) 

pv dye/dr - r-  z (d/dr) (r 2 pD dy,/dr) 

= - -p2yAYBAexp( - -E /RT) ,  i = A , B  (2) 

p v d T / d r - r  2(d/dr)[r2(2/cp)dT/dr] 

= p Z y a Y B ( Q / c p ) A e x p ( - E / R T ) .  (3) 

We suppose that the droplet is not  B-lean, that is in 
any case YA~ = 0. If  the mass ratio A / B  in the droplet 
is 6~<1, then it is easy to derive that 
YBo~ = (1 --6)/(1 +3 )  (molecular weights of  the species 
are considered equal). Introduce the dimensionless 
variables m = (pv)aa/pooDo~, zi = Y i - -  (rZ/m)dyi/d r, 
z = cpT/Q, e =  QR/Ecp, L = Lv/Q, and the first 
Damkoehler  number D~ = a2p2A/p~D~o. 

From equations (1) and (2) we can obtain the equa- 
tions for YB--YA and for ZB--ZA. Solving them with the 
condition (41trZpD dyi/dr)~ = 0 (no diffusion flux at 
infinity) we are led to YB--YA -- YB~ = const. = k >~ 0. 
The smaller k, the closer to the droplet composit ion 
stoichiometry. Due to Ya--YA = const, we can treat 
only the equations for A (subscript A is omitted 
below). In exactly the same way as in ref. [1] these 
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A pre-exponential factor 
a droplet radius 
Cp specific heat capacity 
D diffusion coefficient 
D~ first Damkoehler  number  
E activation energy 
h coefficient in flame radius expansion 

k Ya--YA 
L evaporation heat 
Le Lewis number  
M mass flow rate 
m dimensionless mass flow rate 
P~,2(q) definite integrals 
p = L e / ( k l + 2 L e z  2) 
Q reaction heat 
q = pz]~ 

R gas constant  
r radial coordinate 
T temperature 

NOMENCLATURE 

V 

Y 
Z 

velocity 
mass fraction of the component  A 
dimensionless mass flow fraction of A. 

Greek symbols 
6 mass ratio A / B  in the droplet 
e dimensionless activation energy 
A eigenvalue 
2 heat conductivity 
p density 
z dimensionless temperature. 

Subscripts 
a droplet surface 
f flame 
i = 1 forA,  i =  2 f o r B  
0, 1, 2 expansion order 

far from droplet. 

equations could be shown to result in the following 
ones : 

dy/dz = L e ( y -  z ) / ( z -  z~ + z) (4) 

dz/dz = - y ( y  + k)r4 Le D1 exp(--  1/er)/ 

m 2 (z-- zo~ + z) (5) 

dr/dr = Le r2 / m ( z -  z~ + z) (6) 

(now r~ = r , -  L + ZA,) with the same boundary  con- 
ditions as in ref. [1] except for z(r = 1 ) =  ZA, = 
6/(1 +6). 

As the method of solution (the method of matched 
asymptotic expansions [18]) is described in ref. [1], we 
will not  discuss the details here, but  will concentrate 
on the determination of the flame radius rf = ho(g)ro, 
the terms A0 and AI in the expansion of the eigenvalue 
A of the problem [see equation (8) below], and the 
necessary condition Dj (e) of the validity of thin flame 
concept. 

Introducing in the same way as in ref. [1] the inner 
(near zoo) and the outer (elsewhere) regions and the 
corresponding expansions, e.g. p (~ )=  Edy~(~) and 
e(r) = ZdL(~'), one easily obtains from equations (4)- 
(6) that )7~(~) = Le~ with e = ( z ~ - r ) / e .  Hence it is 
evident that for various orders of magnitude of k 
in the small parameter ~ we have three cases: Ca) 
k > O(e); (b) k = O(~); (c) k = o(e). However, we 
will show that (b) and (c) can be described simul- 
taneously [see Section (b)]. 

(a) Deviation from stoichiometry 9reater than the 
order o f  the small parameter e 

In this case equation (5) for the inner region can be 
changed to 

dz/dz = - kyr 4 Le D l exp(--  1/ez)m 2 (z -- z~ + z), 

(7) 

as if we have the first order reaction that has been 
already considered in ref. [1] for n = 1. Introducing 

A = (D~ h~ r4/m 2) e x p ( -  1/ez~) (8) 

but  not  changing the nomenclature of ref. [1] other- 
wise, we obtain similarly to ref. [1] (taking into 
account the changed boundary  condition for z) : 

A = (A0 +eAi ) / e  2 ; A0 = z~a/2Le 2 z4, 

ho = [ k g 2 D l  e x p ( -  l/gzoo)] -1/4, (9) 

kDi = 0[g 2 exp(l/e'co~)] for e ~ 0, 

rf = h0r0 = (1/2) { 1 + [ 1 - 4 L e  A~/2 h 2 x log(L/z,~)] ~/2} 

(lO) 

Ai/2A0 = {3r,~ + [l.344x/2h0/e0 + r ~  

(Le - 2.344)]/z,, }/[1 - (xf2h0/to z~) log(L/z,,)], 

where 1.344 is the numerical value of P1 (0), see equa- 
tion (13) below. 

(b),(c) Deviation .from stoiehiometry o f  the order o f  e 
or less 

As we now have k = O(e) then let k = klg so that 
k, = O(1). In this case like in the case o f n  = 2 of ref. 
[1] we obtain 

A = (Ao +gAi)/g3 ho = [g3Di e x p ( -  1/ez~)]-1/4 
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D1 = O[e -3 exp(1/¢z~)]. 

The equation for the mass flow fraction is 

dZo/dr = [A0 Le z g(Le 2 ~ + k~)/go] e x p ( -  g/z~) 

with the boundary condition z0(0) = 0. The solution 
of  this equation is of  the following form : 

eg = (2Le3Aoz4/p){1 - [1 + (pg2 + e)/z2] e x p ( -  g/z~)} 

where p = Le/(k l  + 2 L e r ~ ) .  Since matching means 
go(~ ~ o0) ~ ZAa, then Ao =pZ2a/2Le 3 r~.4 Here, as in 
Section (a), 

rf = hogo = (1/2){1 + [ 1 - 4 L E A  1/2 h 2 Iog(L/ZA.)] 1/2 } 

but A0 is different. As we have, once again, in the 
next-to-lowest approximation three different cases for 
different orders of  magnitude of  k with respect to 
e, we put, formally, k = ek~ +e2k2 . Then in the final 
solution we could substitute kz = 0, kl ~ 0 for the case 
k = O(e) ; k~ = 0, kz 4:0 for k = O(e 2) ; and k~ = k2 = 0 
for k = o(e2). 

The substitution of  :z(r) = Zo(~) + ezt (r) to the inner 
region equations gives 

d2, /dr  = d~0/d'~[A~/A0 + (.9z + k2)/ (Le "~ + k~ ) 

+ ~92/Le "~ + 4h0 ~,/go -- g2/z3 + (.~_ Z, )/z0]. 

ff 1 = [1/:~o(~)] dxgo(x)Uo(x)[Al/Ao 

+ ( Y2 (x) + k2) / (Le ~ + k, ) + y2 (x ) /Le  x + 4h o ~ (x) / 

~o - x2 / ~  + X/~o (x)]. 

Here 

~ ( ~ )  = L e ( 1 - - L e ) ( r ~ / z a , ) J  ° dxx f (q , x )  -~'2, 

f (q ,  x) = 1 - (1 + x + qx 2) exp(--  x), q = p'r ~, 

Again when matching ~1(~ ~ ~ )  ~ 0 and 

A j/2A0 = r 2 [2Le A~/2 ho P~/ZA, rO 

(ll) 

+ 3 (1 + 2q)/z~ + ( L e -  1) (qP2 + 2)/ZA, 

-- P,/ZAa -- qk2/2Le z4]/[1 - 2Le A 1/2 ho/ 

(r0ZA,) Iog(L/ZAa)] 

where 

P~ = PI (q) = f / d x [ 1 - f ( q ,  x)~/2], 

Pz = Pz(q) = f o  d x x e x p ( - x ) f ( q ' x ) - 1 / 2 "  (12) 

These integrals are known for some values of  q [6, 16, 
19], e.g. P,(0) = 1.344, P,(1/2) = 2.114, P2(0) = 2. 

Table 1. 

M [ g s  i] 

fi e h0 Ref. [20]  Present results 

1.0 0.06 1 1 . 1 0  1.1-10 4 8.0-10 5 
0.8 0.06 20.00 1.0.10 -4 4.4.10 -5 
0.8 0.10 0.67 8 . 0 "  10 -4  9 .3"  10 -4  

0.8 0.30 0.04 8.0" 10 ' 2.4- 10 

With k 2 = 0 ,  kl 4 :0  we have the result for the case 
k = O ( e ) ;  with k 2 # 0 ,  k l = 0  (i.e. q = 1 / 2 )  for 
k = O ( e  2 ) ; w i t h k ~ = k 2 = 0 ( i . e . k 2 = 0 , q =  1/2) for 
k = o(e 2) which coincides with the case n = 2 of  ref. 
[1]. 

Dimensional mass flux for the large value of  the 
nonstoichiometry parameter is (only the lowest term 
is adduced for brevity) : 

M (°) = 41trf 2 a 2 [211 - 62)Le )~p2A/cp] 1,'2~ _ 1 

× (RT~j /E) (cpT~/Q)  e x p ( - E / 2 R T ~ ) .  

where rf (dimensionless flame radius) is determined 
by equations (9) and (10). 

The presented asymptotic solution can be compared 
with the results of  numerical analysis by Williams [20] 
of  the two-reactant droplet burning for the reaction 
F +  O --* 2P. The droplet was assumed to be of  0.2 mm 
radius. The results of  the comparison are presented in 
Table 1. We would like to note that only the appli- 
cability of  the thin flame model is investigated in the 
present paper, whereas such a restriction does not  
exist in ref. [20]. Hence, the reader should have in 
mind that the proximity of  the presented h0s to 1 
characterizes the validity of  the thin flame model. 

CONCLUSION 

We have analysed the burning of  a droplet of  bipro- 
pellant fuel for a single chemical reaction of  the type 
A + B  ~ 2C for various mixture ratios of  the droplet 
composition. The two lowest-order terms of  the mass 
flow have been calculated. The radius of  the thin flame 
has been determined. The expression for the flame 
structure has been derived. 
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